По данным нейтронной спектроскопии лунных пород, собранным орбитальной станцией двадцать лет назад, учёные построили общую карту распределения водорода на поверхности Луны. Карта определяет два типа пород с повышенным содержанием водорода и подтверждает гипотезы о нахождении водорода и воды на Луне в связи с её геологической историей. В частности, подтверждается роль воды в образовании и последующем остывании магматического океана на ранних стадиях формирования спутника.
![Moon Hydrogen abundances polar regions](https://22century.ru/wp-content/uploads/2022/07/moon-hydrogen-north-south-pole.jpg)
Для этого использовались данные по рассеянию нейтронов космического излучения на лунной поверхности от орбитального аппарата Lunar Prospector. Эта лунная орбитальная станция запущена ещё в 1998 году и пробыла на орбите полтора года, после чего совершила управляемое падение на поверхность. Именно по её данным впервые сделали вывод о повышенном содержании водорода в лунных приполярных областях. Теперь именно эти участки привлекают особое внимание и рассматриваются в качестве перспективных целей будущих лунных станций, которые будут исследовать один из ценных лунных ресурсов — залежи водяного льда неглубоко под поверхностью или в неосвещённых Солнцем кратерах. Подробнее о распределении льда на Луне, а также о связанных с этим перспективах будущих лунных проектов можно подробнее прочитать в нескольких материалах; например, см. нашу недавнюю статью о будущем луноходе VIPER и ссылки на другие «лунные» материалы под ней.
Источники космического излучения — в частности, взрывы звёзд. Космические лучи — это высокоэнергетичные протоны и нейтроны, которые перемещаются со скоростями, близкими к скорости света. При попадании на поверхность планеты такие частицы выбивают атомы, из которых сложены породы. Если исследовать элементный состав таких осколков от разлёта, или, наоборот, изменение космического потока при взаимодействии с грунтом, можно составить представление о строении горных пород планеты.
Водород может входить в состав лёгких атомных групп H2O и OH — собственно вода и гидроксильная группа. Принцип обнаружения при помощи нейтронного облучения как раз использует тот факт, что эти группы по массе сопоставимы с массой отдельного протона или нейтрона космического излучения. Это значит, что при упругом соударении нейтрон легко приводит в движение такую группу — здесь можно представить себе столкновение биллиардного шара с шаром такой же массы: налетающий шар останавливается, а покоящийся — приходит в движение с такой же скоростью. То есть лёгкие молекулы, в частности, водородосодержащие группы эффективно останавливают нейтронное излучение (по этому же механизму вода используется в качестве замедлителя нейтронов в ядерных реакторах). Измеряя долю «остановленных» таким образом нейтронов в потоке космического излучения, можно узнать концентрацию таких лёгких молекул в верхних слоях породы космического тела. Такой же принцип применяется в геологической разведке — один из её методов использует источники и детекторы нейтронов для «просвечивания» горных пород — так определяют содержание в пласте породы воды или углеводородов, тоже имеющих в своём составе много атомов водорода. Разница в том, что при геологической съёмке используют искусственные источники нейтронов, а для лунной поверхности таким источником выступает естественное космическое излучение.
![cosmic rays acting on lunar rocks](https://22century.ru/wp-content/uploads/2022/07/cosmic-rays-action.jpg)
Для практической реализации идеи остаётся должным образом откалибровать данные по относительному уменьшению потока отражённых нейтронов в разных точках лунной поверхности. Такие данные поступили от нейтронного спектрометра, одного из пяти научных инструментов зонда Lunar Prospector. О подробностях пересчёта и результатах можно узнать в статье, вышедшей в июне 2022 года в Journal of Geophysical Research: Planets.
Метод позволяет измерить концентрацию водорода на глубинах до десятков сантиметров, то есть там, куда имеют возможность проникнуть космические лучи. Съёмка со спутников в видимом и инфракрасном свете может зафиксировать распределение воды только на самой поверхности, с глубиной проникновения всего в десятки микрон. Интересно, что распределение водорода по поверхности коррелирует и с данными по лунным образцам, собранным «Аполлонами» в нескольких точках посадки.
Содержание водорода повышено в двух типах материалов. Во-первых, это породы на плато Аристарха — крупнейшая область лунных пирокластических отложений. Это обломки пород, которые образовались при выбросе из вулканических кратеров во время извержений. Это подтверждает выводы о значительной роли, которую вода и водород играли во время магматических событий в ранней истории Луны. Второй вид пород — так называемые породы типа KREEP. Этот акроним обозначает лунные породы лавового происхождения и указывает на их преобладающий состав: калий (K), редкоземельные элементы (REE, Rare-Earth elements) и фосфор (P).
Популярная теория образования Луны предполагает, что её материал — расплавленные фрагменты пород и куски лавы, которые были выброшены в околоземное пространство при катастрофическом столкновении некоторого массивного тела с Землёй на ранней стадии её истории. Они вращались на орбите вокруг Земли, постепенно собираясь в рыхлый «ком» под действием гравитации. Такой же механизм, как считают, работал и при образовании планет из остатков протопланетного диска, и впоследствии — из планетезималей. По мере охлаждения материала будущего спутника в твёрдую фазу последовательно выпадали разные минералы с разными температурами кристаллизации. Вероятно, породы KREEP были типом материала, кристаллизация которого проходила в последнюю очередь.
Новая карта не только завершает «инвентаризацию» имеющегося на Луне водорода по ареалам обитания, но и позволяет узнать, сколько водорода и воды находилось на Луне в момент её рождения. Почти десять лет назад орбитальная съёмка нейтронным спектрометром также подтвердила залежи водного льда в полярных областях Меркурия. Такой же вывод давно сделан о Марсе: известно, что видимые даже с Земли снеговые шапки на его полюсах содержат большое количество льда (больше того, марсианские станции, работающие в приполярных областях, доставили прямые доказательства наличия на Марсе водяного льда недалеко от поверхности). Такие находки, кроме теоретического значения для изучения эволюции Солнечной системы, также позволяют планировать места посадки будущих марсианских и лунных станций.