Российские химики побудили лантаноиды сиять

+7 926 604 54 63 address
 Люминесценция комплексных соединений лантаноидов: тербия (зелёная) и европия (красная) с органическими лигандами под действием УФ-излучения.
Люминесценция комплексных соединений лантаноидов: тербия (зелёная) и европия (красная) с органическими лигандами под действием УФ-излучения.

Исследователи из Физического института РАН и МФТИ получили новые органические соединения, необходимые для создания эффективно люминесцирующих материалов на основе лантаноидов. Люминесцентные свойства этих веществ сопоставимы с используемыми сегодня в промышленности соединениями благородных металлов, но их производство будет в разы дешевле. Работа опубликована в Beilstein journal of organic chemistry (BJOC).

Люминесценцией называют нетепловое свечение вещества после поглощения им энергии возбуждения. Люминесцентные материалы — это материалы, которые при облучении их светом сами начинают светиться, причём яркость люминесцирующего объекта больше, чем яркость (в том же диапазоне волн) абсолютно чёрного тела, имеющего ту же температуру. Спектр применения этих материалов чрезвычайно широк. Они нужны для изготовления защитных маркировок, создания источников света и оптико-электронных устройств, в частности, органических светодиодов (OLED), которые сейчас широко применяются, например, в лазерах. Одним из интересных приложений являются конвертеры излучения для солнечных батарей и теплиц. Конвертером может быть пластмассовая пластинка, в которой растворено такое соединение. При попадании на неё солнечного света излучение в синей области спектра поглощается и преобразуется в красное. Аналогично, повышается степень преобразования солнечного света в кремниевой батарее, поскольку можно использовать ультрафиолетовую часть спектра солнца, к которой сама батарея не чувствительна.

«Мы занимаемся синтезом координационных соединений лантаноидов (элементов с атомными номерами с 57 по 71) для различных люминесцентных применений. Координационными называют обширный класс соединений, в которых вокруг одного атома собирается каркас из органических молекул. Соединения лантаноидов, которые мы изучаем, имеют потенциальные преимущества перед теми соединениями, которые используются в настоящее время в электронике», — сообщает один из авторов работы, ведущий научный сотрудник лаборатории технологий 3D-печати функциональных микроструктур МФТИ Илья Тайдаков.

Сейчас в промышленности используются координационные или металлоорганические соединения благородных металлов — в основном платины и иридия. Эти соединения обладают рядом недостатков, что накладывает ограничения на сферу их возможного применения. Невозобновляемые запасы платиновых металлов постоянно уменьшаются, а синтезировать такие материалы сложно, поэтому они дороги, к тому же обладают достаточно низкой монохроматичностью излучения. В отличие от них, координационные соединения лантаноидов существенно дешевле и обладают высокой монохроматичностью, что важно при создании RGB-систем, лазеров, специальных селективных меток.

Для получения таких соединений лантаноидов нужны специальные органические молекулы, которые, реагируя с ионами лантаноидов, образуют координационные соединения. Эти органические молекулы должны обладать рядом свойств, чтобы получающиеся комплексы были эффективными люминофорами. На первом этапе своих исследований Илья Тайдаков с коллегами взяли в качестве такой органической молекулы распространённый промышленный реагент — 2-теноилтрифторацетон. Они синтезировали ряд его аналогов, содержащих более длинные фторированные цепочки углеродных атомов в боковой цепи структуры этого реагента, чтобы в будущем исследовать их взаимодействие с ионами лантаноидов.

«Такие соединения до нас практически не изучались. В рамках этой работы мы предложили метод синтеза, который позволяет получать эти соединения. Оптимизировали его, получили ряд новых производных и полностью их охарактеризовали. Интересно, что по мере увеличения длины фторированной боковой цепи органической молекулы улучшаются люминесцентные свойства, но не до бесконечности, где-то существует оптимум», — рассказывает Илья Тайдаков.

Чтобы получить люминесцентный материал на основе лантаноида, необходимо выполнить определённые условия. Сам ион редкоземельного элемента может поглощать и испускать свет. Но эффективность процесса поглощения света очень низка. Решить эту проблему можно, подобрав такую органическую молекулу, у которой высокий коэффициент поглощения. Она эффективно поглощает свет, потом передаёт полученную энергию на центральный ион лантаноида, который уже и испускает эту энергию в виде света.

Преобразование УФ-излучения в видимый свет координационными соединениями лантаноидов
Преобразование УФ-излучения в видимый свет координационными соединениями лантаноидов.

«Таким образом мы увеличиваем степень поглощения света в 3—4 тысячи раз и можем создать материалы, которые будут эффективно люминесцировать, — говорит Илья Тайдаков. — Для каждого лантаноида существует характерный набор полос эмиссии в определённой области спектра. Поэтому для нас является весьма важной задачей создание такого органического кокона, который будет хорошо поглощать свет и образовывать прочную связь с центральным ионом, чтобы добиться эффективной передачи энергии. Сейчас на основе полученных соединений мы создаём комплексные соединения лантаноидов и изучаем их фотофизические свойства».

Работа выполнена при поддержке Российского научного фонда и Российского фонда фундаментальных исследований.

.
Комментарии