Уникальный метод синтеза мультиграфеновых плёнок при комнатной температуре удалось разработать научному коллективу НИТУ «МИСиС». Его применение позволит наносить мультиграфен на поверхность легкоплавких металлических порошков для создания качественно новых 3D-композитов. Работа опубликована в журнале Materials Chemistry and Physics.
Добавки графена в материалы, используемые в 3D-печати, улучшают механические и функциональные свойства композиционных изделий: повышается их теплопроводность, механическая прочность, электропроводность. Это важно при создании сложных деталей для аэрокосмической промышленности.
Простейший метод синтеза графена — микромеханическое расслоение графита, предложенное лауреатами Нобелевской премии 2011 года Геймом и Новосёловым, однако он малопроизводителен и применяется, в основном, для лабораторных исследований.
Один из способов получения графена электрохимическим способом — его формирование из расплавов солей. Однако синтез графена в данном случае проводится при температуре 500—700°C, что исключает возможность его осаждения на частицы легкоплавких металлов, таких как алюминий, а значит, значительно сужает круг возможных композитов, модифицированных графеном.
Учёные и инженеры лаборатории «Катализ и переработка углеводородов» НИТУ «МИСиС» решили эту проблему, разработав новую низкотемпературную технологию получения мультиграфена для нанесения на силуминовые (сплав на основе алюминия и кремния) порошки, применяемые в создании композитов методом 3D-печати.
«Нашей задачей было производство значительного количества порошкового композита на основе графена и силумина для 3D-печати. Для этого мы проводили электрохимическое осаждение графена из слабого раствора серной кислоты с добавлением сахарозы. При осаждении графена на порошок силумина, температура раствора не превышала 25—30°C. Затем полученные композиты подвергались сплавлению методом SLM с получением 3D-изделий», — рассказал соавтор исследования, инженер кафедры функциональных наносистем НИТУ «МИСиС» Сергей Ерёмин.
По словам разработчиков, предложенная технология позволяет регулировать толщину нанесённого слоя графена и поддерживать его равномерное распределение в порошке.
В дальнейшем коллектив разработчиков планирует усовершенствовать технологию синтеза мультиграфена за счёт контроля толщины получаемых графеновых слоёв, а также научиться получать непрерывные графеновые плёнки.
Второе направление развития технологии — прямое получение порошка графена с высокой удельной поверхностью, которая обеспечит улучшение сорбирующих качеств для создания фильтрующих материалов. Если модифицировать такие порошки наночастицами серебра или меди, к высоким фильтрующим свойствам добавится и бактерицидный эффект. Фильтры на их основе можно будет применять для очистки воды и воздуха в промышленных и бытовых условиях.