Исследована белковая структура, на изучение которой ушло 14 лет

+7 926 604 54 63 address
 Модель молекулы канального родопсина.
Модель молекулы канального родопсина.

Группа учёных из МФТИ в сотрудничестве с коллегами из Юлихского исследовательского центра (нем. Forschungszentrum Jülich), Европейским центром синхротронного излучения (European Synchrotron Radiation Facility) и других зарубежных научных учреждений получила структуру канального родопсина ChR2 — мембранного белка, который широко используется в оптогенетике для управления нервными клетками при помощи света. Статья опубликована в Science.

«Получением структуры, безусловно, занималось много разных групп по всему миру с самого открытия ChR2 в 2003 году, однако без особых успехов — до сих пор структура белка в его естественном виде известна не была. Наличие структуры позволит оптогенетике делать осмысленные мутации в белке, подстраивая его под конкретные эксперименты. Конечно, раньше это было невозможно, и большинство мутаций делались трудоёмким перебором или на основании структур родственных белков», — комментирует открытие Валентин Борщевский, заместитель заведующего лабораторией перспективных исследований мембранных белков МФТИ и первый автор статьи.

Оптогенетика — современная методика, позволяющая при помощи света управлять нервными или мышечными клетками в живом организме. Кроме того, схожие методы используются для того, чтобы частично восстанавливать потерянное зрение и слух, управлять сокращением мышц. Методы оптогенетики так же используются для того, чтобы изучать свойства естественных нейронных сетей, которые отвечают за эмоции, принятие решений и другие сложные процессы в живых организмах. В 2010 г. оптогенетика была названа «методом года» научным журналом Nature и «прорывом десятилетия» — редакцией журнала Science.

Наиболее распространённый инструмент оптогенетики — светочувствительный белок ChR2, выделенный в начале XXI века из зелёных водорослей Chlamydomonas reinhardtii. Учёные встраивают этот белок в мембраны живых клеток. Под действием света он открывается, пропуская через клеточную мембрану внутрь клетки положительно заряженные ионы. В случае нервной клетки это запускает деполяризацию мембраны, имитируя прохождение по ней нервного сигнала и активируя конкретный нейрон.

На сегодня канальный родопсин ChR2 — самый распространённый инструмент для активации нервных клеток. Он используется повсеместно, в основном благодаря своей высокой скорости работы и относительной безвредности для клеток. Существует множество искусственных мутаций ChR2, которые модифицируют его свойства — например, увеличивают величину генерируемого тока или длину волны света, на которую белок «откликается».

Большинство мутаций, однако, делались практически «вслепую», методом направленной эволюции или исходя из данных по структурам похожих белков. Самая похожая структура, имеющаяся на данный момент — химера C1C2, в структуре которой примерно 70% от родственного белка ChR1 и 30% от ChR2. Эта структура, однако, не позволяет полностью объяснить все свойства белка, а значит, и интересные для оптогенетики мутации, спрогнозированные по этой структуре, не несут особенной правдоподобности.

Чтобы изучить структуру белка, учёные использовали метод рентгеновской кристаллографии. Для его использования необходимо получить кристалл, в узлах которого сидят молекулы белка. Это было сделано при помощи кристаллизации in meso — метода получения кристаллов мембранных белков, при котором для роста кристаллов используется особая среда, позволяющая белкам свободно перемещаться в пространстве, не выходя при этом из мембраны — липидная кубическая фаза. После этого кристаллы облучают рентгеновским излучением с длиной волны порядка 0,1 нм (чуть меньше длины межатомной связи в белке), тем самым получая данные рентгеновской дифракции, по которым затем восстанавливается структура белка.

.
Комментарии