Сколько у вас хромосом? История одной мутации

Сравнение хромосом человека и шимпанзе.
Видно, что 2-я хромосома человека соответствует 2-м хромосомам шимпанзе. Источник: Jorge Yunis, Science 208:1145-58 (1980). Courtesy of Science magazine.

Один из популярных доводов креационистов звучит так: у человекообразных обезьян — шимпанзе, горилл и орангутанов — на 2 хромосомы больше, чем у человека. Как же получилось, что в процессе эволюции у людей потерялись хромосомы? Происходит ли что-то подобное у нас сейчас? Почему люди могут и не подозревать, что они — мутанты? Каким образом эти мутанты размножаются?

Напомним нашим уважаемым читателям, что хромосомы — это такие штуки, в которые в наших клетках упакована ДНК. У человека 23 пары хромосом: 23 хромосомы достались нам от мамы и 23 — от папы. Итого 46. У шимпанзе — 24+24=48. Полный набор хромосом называется «кариотип». В каждой хромосоме находится в плотно скрученном виде очень большая молекула ДНК. На самом деле, важно не число хромосом, а те гены, которые в этих хромосомах содержатся. Один и тот же набор генов может быть упакован в разное число хромосом.

В 1980 году в авторитетном журнале Science вышла статья команды генетиков университета Миннеаполиса. Исследователи применили новейшие на тот момент методы окраски хромосом (на хромосомах появляются поперечные полоски разной толщины и яркости, при этом каждая хромосома отличается своим особым набором полосок). Оказалось, что у человека и шимпанзе исчерченность хромосом почти идентична! Но как быть с лишней хромосомой у обезьян? Всё очень просто: если напротив второй хромосомы человека поставить в одну линию 12-ю и 13-ю хромосомы шимпанзе, соединив их концами, мы увидим, что вместе они и составляют вторую человеческую.

Позже, в 1991 году, учёные присмотрелись к точке предполагаемого слияния на второй человеческой хромосоме и обнаружили там то, что и искали, — последовательности ДНК, характерные для теломер — концевых участков хромосом. Ещё через год на той же хромосоме нашлись следы второй центромеры (центромера — участок, необходимый для нормального деления клетки. Центромера обычно делит хромосому на две части, называемые плечами; у каждой хромосомы имеется только одна активная центромера). Очевидно, на месте одной хромосомы раньше было две. Итак, когда-то у наших предков две хромосомы слились в одну, образовав 2-ю хромосому человека.

Как давно это случилось? Сейчас, когда палеогенетики научились восстанавливать геномы ископаемых существ, мы знаем, что и у неандертальца, и у денисовского человека несколько десятков тысяч лет назад уже было 46 хромосом, как и у нас. По современным данным, слияние произошло гораздо раньше, в интервале 2,5—4,5 млн лет назад. Для того чтобы определить дату точнее, хорошо бы заполучить геномы гейдельбергского человека и Homo erectus, а также полностью реконструировать соответствующие хромосомы современных человекообразных обезьян.

Но возникает вопрос: допустим, у кого-то из наших предков две хромосомы соединились в одну. У него получилось нечётное количество хромосом — 47, в то время как у остальных, не мутировавших особей — по-прежнему 48! И как же такой мутант потом размножался? Как вообще могут скрещиваться особи с разным числом хромосом? Напомню, что при мейозе — клеточном делении, в результате которого образуются половые клетки — каждая хромосома в клетке должна соединиться со своей парой-гомологом. А тут возникла непарная хромосома! Куда же ей податься?

Но оказывается, это — не проблема, если при мейозе гомологичные участки хромосом найдут друг друга. В случае нечётного числа хромосом некоторые половые клетки могут нести «несбалансированный» генетический набор из-за неправильного расхождения хромосом в мейозе, но другие могут получиться вполне нормальными.

При скрещивании 47-хромосомного мутанта с 48-хромосомной «дикой» особью часть деток получится обычной, 48-хромосомной (24+24), а часть — 47-хромосомной (23 от мутантного родителя + 24 от обычного). В итоге появляются уже несколько особей с нечётным числом хромосом. Остаётся им встретиться — и вуаля: в следующем поколении появляются 46-хромосомники (23+23). Специалисты полагают, что дальнейшее распространение 46-хромосомного типа могло произойти благодаря неким эволюционным преимуществам, возникшим в результате этой мутации. Слияние хромосом привело к потере или изменению работы генов, находившихся вблизи точки слияния. Может быть, из-за этого возросла плодовитость или усилились когнитивные способности (исследования показывают, что несколько генов, находящихся вблизи точки слияния хромосом, экспрессируются в мозгу, а также в половых железах мужчин).

Модель «гориллоподобного» полигамного клана ранних Homo, где у самца (или мужчины) произошло слияние хромосом. Квадратики — самцы, кружки — самки.
Самец с возникшей мутацией (II поколение), обладатель 47 хромосом, имел детей от нескольких самок (III поколение). В итоге, часть его потомков получились 48-хромосомными (незакрашенные), часть — 47-хромосомными (наполовину закрашенные), в дополнение к больным и мёртвым из-за несбалансированности хромосом (чёрные треугольники). В IV поколении в результате скрещивания двух носителей мутации получаются 46-хромосомные варианты (полностью закрашенные кружок и квадрат).

Кто-нибудь скажет, что всё это фантазии. Однако слияние хромосом происходит у людей и сейчас, в результате распространённой мутации — робертсоновской транслокации (сокращённо — ROB).

Если вы видели хромосому на картинке, то представляете, что часто она выглядит как два «плеча», отходящих от одной точки — (эта точка и является центромерой). Иногда плечи одинаковой длины — такую хромосому называют метацентрической. Если плечи неравны — хромосома субметацентрическая. И если одно из плеч такое коротенькое, что его почти не видно, — хромосома акроцентрическая.

Так вот, при ROB две акроцентрические хромосомы разрываются в точке центромеры, и их длинные плечи сливаются, формируя новую единую хромосому. Короткие плечи тоже соединяются и образуют маленькую хромосому, которая обычно теряется за несколько клеточных делений. Вот и стало на хромосому меньше. При этом маленькая хромосома содержит так мало генетического материала, что может пропасть без какого-либо заметного эффекта для индивида. Всё бы хорошо, только у организма получился нечётный набор хромосом (22+23=45 вместо 46).

Робертсоновские транслокации — не такое уж редкое событие. 45 хромосом обнаруживается у каждого 1000-го новорождённого ребёнка. У человека ROB может затрагивать акроцентрические хромосомы 13, 14, 15, 21 и 22. Большинство носителей ROB абсолютно здоровы и ни о чём не подозревают, пока не пытаются заводить детей. Но проблем может и не возникать — и в этом случае мутация будет передаваться из поколения в поколение, никем не замеченная.

А каков шанс двум таким мутантам встретиться и родить 44-хромосомного ребёночка? Казалось бы, это очень маловероятное событие. Однако в небольших человеческих популяциях браки между родственниками — например, кузенами — не редкость. В этом случае скрещивание двух носителей ROB вполне возможно. Такие истории известны генетикам уже много десятилетий. Вот только две из них.

Факт передачи мутации в течение как минимум 9 поколений зафиксирован в 1987 году. ROB были обнаружены в трёх финских семьях, восходящих к общему предку. Генеалогию семей удалось проследить до начала XVIII века, когда их предки жили в 3-х деревнях на севере нынешней Финляндии, недалеко друг от друга. Самая крупная из семей содержала на момент исследования как минимум 49 носителей слившихся хромосом 13 и 14. Среди них нашлась и гомозигота по мутации, обладатель 44 хромосом — женщина, родители которой были троюродными кузенами. За исключением небольшого роста, 152 см, она была здорова и родила 6 детей! Умерла удивительная женщина в 63 года от остановки сердца.

Ещё один случай зафиксирован в 2016 году в Китае. История такова: 25-летний китайский мужчина женился на молодой женщине; у них родился сын, но умер 6 месяцев от роду. В связи с этим медики сделали генетический анализ. Выяснилось, что умерший ребёнок был 45-хромосомным, мама — обычная, а вот папа — обладатель 44 хромосом. Дальнейшее расследование показало, что родители мужчины — двоюродные брат и сестра, оба носители ROB. У них слились в одну хромосомы 14 и 15. Специалисты решили провести полное обследование уникального пациента. Для начала его осмотрели психиатр и невропатолог, которые не выявили никаких отклонений от нормы. Затем мужчине сделали томограмму мозга, электроэнцефалограмму и даже люмбальную пункцию — всё прекрасно, «мутант» здоров как бык. Далее учёные изучили сперматозоиды как самого мужчины (44 хромосомы), так и его отца (45 хромосом). У отца 20% спермиев оказались несбалансированными, зато у сына — 99,7% спермиев были вполне нормальны. Итак, наш 44-хромосомный мужчина здоров и готов к размножению. Конечно, как видим, при браке с женщиной — носителем обычного кариотипа, у него возникли трудности. А вот если бы ему попалась такая же, как он, ROB-гомозигота — всё было бы идеально.

По мнению авторов исследования, репродуктивный барьер между носителями ROB и обычными людьми, теоретически, может привести к формированию изолированной популяции 44-хромосомных людей, скрещивающихся друг с дружкой. А это уже путь к возникновению нового подвида Homo sapiens.

Комментарий к. б. н., заведующего лабораторией сравнительной геномики Института молекулярной и клеточной биологии СО РАН Владимира Трифонова:

То, что геном, как и любая биологическая система, является динамичным и изменчивым, известно очень давно, а перечисление доказательств этих изменений, полученных методами секвенирования, займёт сотни лет. Изменчивость генома может проявляться на разных уровнях — это и замены отдельных единиц ДНК — нуклеотидов, их вставки и делеции, и изменения чуть более протяжённых участков (например, очень часто происходят вставки мобильных элементов), и, наконец, крупные хромосомные перестройки, видимые даже в микроскоп, а потому внимание к ним издавна повышенное. У некоторых организмов изменчивость может включать даже увеличение числа геномов на клетку (плоидность), особенно часто такие изменения встречаются у растений, тем более культурных. Так что в вопросе геномных отличий человека и человекообразных обезьян исследователей удивляет не наличие хромосомных перестроек (на самом деле, конечно, их гораздо больше, просто в микроскоп хромосома 2 заметней всего), а то, почему их так мало. Большинство других видов млекопитающих за тот же промежуток времени подверглись более значительным геномным преобразованиям, как они не вытеснили наших предков с менее расторопными геномами?

Вопрос о том, как фиксируются мутации, к которым относятся и хромосомные перестройки, в популяции, был решён создателями синтетической теории эволюции в начале прошлого века, и описан этот вопрос в том же учебнике общей биологии. Поэтому ссылки на разное количество хромосом, как на некое противоречие — безусловно, показатель невежества и отсутствия элементарных школьных знаний.


[TBS_COLLAPSE accordion=’y’]
[TBS_COLLAPSE_GROUP title=»ЛИТЕРАТУРА (кликните, чтобы посмотреть)» open=’n’ color=»green»]

  1. Eklund A, Simola KO, Ryynänen M. Translocation t(13;14) in nine generations with a case of translocation homozygosity // Clin Genet. 1988;33:83—6.
  2. Jieping Song et al. A family with Robertsonian translocation: a potential mechanism of speciation in humans // Molecular Cytogenetics 2016 9:48 DOI: 10.1186/s13039-016-0255-7
  3. Stankiewicz P. One pedigree we all may have come from — did Adam and Eve have the chromosome 2 fusion? // Molecular Cytogenetics 2016 9:72 DOI: 10.1186/s13039-016-0283-3
  4. Yunis JJ, Sawyer JR, Dunham K. The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee // Science. 1980 Jun 6;208(4448):1145-8
  5. Avarello R et al. Evidence for an ancestral alphoid domain on the long arm of human chromosome 2 // Hum Genet. 1992 May;89(2):247-9 https://www.ncbi.nlm.nih.gov/pubmed/1587535
  6. [/TBS_COLLAPSE_GROUP]
    [/TBS_COLLAPSE]

Александр Соколов :Окончил физико-математическую школу, затем Санкт-Петербургский государственный университет по специальности «прикладная математика» (с красным дипломом). Научный журналист. Создатель и бессменный редактор портала АНТРОПОГЕНЕЗ.РУ. Организатор выставок «10 черепов, которые потрясли мир» (Государственный Биологический музей им. К.А.Тимирязева, Москва), «На пути к человеку: лабиринты превращений» (Государственный музей истории религии, Санкт-Петербург), «17 черепов и зуб» (передвижная, Государственный Биологический музей им. К.А. Тимирязева, Москва). Автор книги «Мифы об эволюции человека» («Альпина-нон-фикшн», 2015). Финалист премии «Просветитель» (2015). Лауреат Беляевской премии (2016).