Расшифрована атомная кристаллическая структура оксинитрида бора

+7 926 604 54 63 address
 Расшифрована атомная структура оксинитрида бора (BNO), синтезированного в 2017 году (элементарная ячейка двумерного материала представлена слева). Необычная атомная структура приводит к смещению области поглощения в область ближнего ультрафиолета по сравнению с чистым h-BN (спектр поглощения справа). Иллюстрация предоставлена авторами статьи.
Расшифрована атомная структура оксинитрида бора (BNO), синтезированного в 2017 году (элементарная ячейка двумерного материала представлена слева). Необычная атомная структура приводит к смещению области поглощения в область ближнего ультрафиолета по сравнению с чистым h-BN (спектр поглощения справа). Иллюстрация предоставлена авторами статьи.

Российские учёные расшифровали кристаллическую структуру оксинитрида бора (BNO) — материала с контролируемыми электронными и оптическими свойствами. Ранее считалось, что замена части азота в нитриде бора на кислород не изменит строение решётки. Но изучение этого материала методами компьютерного моделирования показало: кристаллическая структура становится иной, при этом меняются и свойства материала.

Исследование расширяет область потенциального применения двумерных наноматериалов. Возможно, на их основе получится создать совершенно новые приборы. Результаты работы опубликованы в журнале Physical Chemistry Chemical Physics, где были отмечены редакцией и вошли в тематическую подборку 2021 PCCP HOT Articles.

Оксинитрид бора (BNO) совмещает в себе начальную структуру (атомную и электронную) гексагонального нитрида бора с низкой электропроводностью. Внедрение кислорода может изменять кристаллическую решётку нитрида бора.

«Любые свойства материала связаны с особенностями его структуры. Однако до сих пор было неясно, как изменяется атомное строение h-BN после окисления. Этот факт сподвигнул нас сконцентрироваться на изучении кристаллической структуры оксинитрида бора. Мы начали исследование с применения эволюционного алгоритма USPEX, который позволяет предсказывать строение материала, исходя из знания только лишь его химического состава», — рассказывает Дмитрий Квашнин, руководитель проекта РНФ, доктор физико-математических наук, старший научный сотрудник Института биохимической физики им. Н. М. Эмануэля РАН.

«Эволюционный алгоритм на этапе проведения первоначального скрининга дал нам большой массив новых кристаллических структур. Далее полученные структуры изучались более детально с помощью приближений теории функционала электронной плотности», — поясняет Захар Попов, соавтор работы, кандидат физико-математических наук, старший научный сотрудник ИБХФ РАН.

Расчёты показали, что в результате добавления в нитрид бора кислорода образуются специфические двумерные структуры. Они более дефектные и менее плотные, и в результате значение упругих постоянных ниже, чем у исходного вещества. Этот факт объясняется особенностями положения атомов кислорода. При определённой концентрации для них оказывается энергетически более выгодным образовать эпоксидный мостик между двумя другими атомами в материале и нарушить структуру решётки, чем заместить их. Это также привело к появлению локальных дипольных моментов, которые могут придать структуре необычные пьезоэлектрические свойства — иными словами, возрастает вероятность возникновения и усиления электрических импульсов при механическом воздействии.

«Ранние работы по исследованию структуры BNO были основаны на концепции того, что атомы кислорода внедряются в решётку гексагонального нитрида бора в позиции замещения атомов азота, при этом не меняя её. Нам удалось показать, что кристаллическая структура BNO намного сложнее. Результаты исследования приближают возможность реального применения оксинитрида бора на практике, в частности, для дальнейшего использования в нано-, опто- и электромеханических устройствах», — заключил Дмитрий Квашнин.

.
Комментарии